Fertilizer and pH

Presentation for the Cymbidium Club of Australia - March 2009

By Terry Davis

pH and Nutrition

•What is pH?

- Put simply it is the reciprocal log concentration of Hydrogen-ions per litre.
- •Put even simpler it is measured on a scale from 1 14
- •1 being most acidic and 7 being neutral.
- •Each number decrease from 7 = 10x concentration of hydrogen ions.
- •The preferred pH for orchids
- •Between 5.8 and 6.5

What effects pH for plants?

- •Type of material used for potting mix.
- •Addition of OH- ions or acids, eg. Phosphoric Acid
- •The breakdown of organic matter in the potting mix creates organic acids– this lowers the pH.
- •The use of fertilizers in general & nitrogen supplied as ammonium or urea also reduces the pH.
- •How does pH affect orchid nutrition?
- •For orchids to grow properly they require the growing medium along with water/nutrients to have a pH within the specific range.
- •Lower pH below 5.8 = Changes:
 - -Decreases nutrient availability insoluble
 - -Increases Al³⁺ ion toxicity
 - -Microbial activity decreases
 - -Influence on fertilizer efficiency. * Reduced Availability = increase cost for same results.
 - -Influence on plant growth uptake effected.
- •As the soil pH increases from a more acidic condition to pH 6.5
 - -Macronutrients (N, P, K) increases in solubility.
 - -Secondary nutrients (Ca, Mg, S) also increases in solubility.
- •Micronutrients (except Molybdenum) decreases in solubility.

- •Aluminium ions decrease resulting in reduced effect on plant roots (very important) and uptake and movement of nutrients.
- •Al3+ ions increases at and below pH below 5.5

Chart of the Effect of Soil pH on Nutrient Availability

pH Correction

- •Addition of Limestone eg. Calcium Carbonate (garden lime) slow acting
- •Use Dolomite when magnesium is also required or desired.
- •Hydrated lime quick acting 82% Ca. Can be added to liquid nutrient in dilution.
- •Gypsum *is not* suitable for pH correction.
- •Testing water runoff with pH strips or pH meter

Fertilizers

Fertilizer Requirement and Rate of Use

- •The type, brand, rate & frequency a fertilizer used generally choice of user.
- •Can be influenced by the type of growing mix used and the amount of water given.
- Available time.
- •Can be scientifically based & for the nutrient requirements of a particular genus.
- •But is generally hit and miss.
- •How do we decide?
- •Use by rate recommended by supplier??
- •Why?
- •Cymbidiums, Cattleys and Phalaenopsis etc. all have different requirements for most macronutrients.

Scientific Study of Requirements

- •A study conducted by Hugh A Poole & John G Seeley from the **Department of Floriculture** and **Ornamental Horticulture Cornell University Ithaca NY** into nutritional requirements of the three orchid genera mentioned.
- •N, K & Mg levels were studied.
- •Conclusions reached was cymbidiums require different amounts of macro nutrients to the other genera studied.
- •Application on a regular basis achieved optimum growth.

Required Nutrient Levels

- •The level of N, P, K, Mg & Fe that gave the best result for Cymbidiums was.
- •100 ppm N
- •20 ppm P
- •75 ppm K
- •25 ppm Mg
- •8-10 ppm Fe.
- •The only difference we experience as growers is:
- •The study didn't allow for nitrogen draw down

- •Draw down is due to the activity of micro organisms breaking down organic matter & as mentioned it changes the pH as a result.
- •Used an inert medium
- •Plants were grown in glass beads.
- •Additionally Calcium is a required macro nutrient, up to 100 200ppm can be used.

To calculate Parts per Million (PPM)

•Simple process, if the fertilizer, eg. Phostrogen, has the N:P:K ratio shown as the percentage (%)

14:4.4:22.4

Calculating Parts Per Million

If 1 gram of the fertilizer is dissolved in 1 litre of water approximately 1/5 level teaspoon. Simply add a ZERO to the % = PPM

•The PPM is 140:44:224

•Recommended 1 level teaspoon 9 litres = 77.8 : 24.4 : 124.4 PPM – watch this space???

Types of Fertilizers Used

- •The fertilizers most commonly used by growers:
- •Organic / Enhanced Organic
- •Slow Release Inorganic
- •Soluble or Liquid Inorganic

Organic Fertilizer

- •Most low in nutrients eg. Dynamic Lifter N:P:K = 3.0 : 2.4 : 1.5
- •Little control and slowly available in solid form better to use liquid form BUT????
- •Based on the study, how much would you use over the major growth period?
- •Significant effect on lowering the pH.
- •Requires constant pH adjustment.
- •Benefits. No salt build-up in the mix.
- •Solid form can't wash it away in one watering.

- Steadily available in rainy periods.
- •Kelp/Seaweed extracts are essentially **not fertilizers**.
- •They do however contain beneficial growth substances, trace minerals, plant protein and enzymes etc.
- •Other substances that can be used include Zeolite, Humic and Fulvic Acids. These can have beneficial effects on plant growth.

Organic Summary

- •Organic fertilizers make some grower feel cozy about fertilizing, trial and error results based?
- •Better as an addition to regular inorganic fertilization of pot plants.
- •Dynamic Lifter What's the point?
- •Value of some so called enhanced organic?? brands is based purely on marketer skill and anecdotal hype.
- •Some cymbidiums are grown successfully in just HORSE manure and that's no Bull S**t!!

Controlled Release Fertilizer

- •Depends on quantity used, quality of release mechanism, temperature and water.
- Nutrients amount is not **consistently** provided to plants eg. If watering on hot days more fertilizer is released than on colder day.
- •Much more suited to large scale production without expensive irrigation/fertigation system, but what do you buy????!!!!

Controlled Release Summary

- •Good to use if time constraint prohibit using soluble fertilizer.
- •Buy the best on the market at the correct N:P:K and check source of Nitrogen.
- •Ensure N:P:K ratio is adequate and what of Mg, Fe and Ca requirements. Dolomite?
- •Timing of application and reapplication is important because of released quantity of recent application deteriorates over time.
- •Timing of water and amount of water given.
- •Contradicts flushing salts out of mix between fertilizer applications, if used too heavily.

Soluble or Liquid Fertilizer

- •With liquid nutrients, the grower can provide exacting nutrient quantity at regular intervals.
- •Balanced fertilizer program.
- Easily varied to suit changes required.
- •Requires more time to apply than slow release or solid organic fertilizer. Every week or so.
- •If using a home mixture, then correct Nitrate to Ammonium ratio can be achieved.
- •Same amount of fertilizer applied each time.
- •Only difference is watering provided between fertilization.

Dilution of Fertilizer

- •Phostrogen N: P: K = 14: 4.4: 22.4 if used at 1 gram per litre of water provides N:P:K ratio of 140: 44: 224 parts per million. By increasing the dilution to 1 gram to 2 litres of water changes the rate to 70: 22: 122 ppm.
- •Mixing of different brands of fertilizer or adding to dilutions is required to achieve desirable N:P:K ratio.
- •My fertilizer:

N = 79.95ppm, P = 20.07 ppm, K = 75.13 ppm. Use 92.31 grams in 240 litres.

Addition of 60 gms of Ca NO^3 to 240 litres of water increases N=118.7 and Ca to 47ppm.

- •Cost before increase \$1.68 Kg + CaNo3 @ 12¢ for 60 gms
- •Added extra Ca as CaOH to adjust pH or as Ca EDTA and some higher K as KOH.

Soluble Summary

- •Orchid nutrition is not necessarily hit and miss.
- •Used at incorrect dilution results in wasted fertilizer and wasted money.
- •Dramatic increase in fertilizer cost in recent year eg. MAP 2008 costs \$132.00 up from \$49.50 in 2005.

Some important facts for all inorganic fertilizers.

- •Fertilizers alter the pH of the potting mix, more so if using easily decomposed organic potting materials.
- •Urea in a fertilizer requires the soil enzyme urease from microorganisms to break down urea into ammonium and CO² at suitable pH.
- •The greater the change in pH depends on quantity of urea in fertilizer.

- •Conversion of urea varies with temperature eg. at 26°C 90% in 2 days & at 2°C 10 days is needed.
- •Urea doesn't register on a conductivity meter (if you use one), so recalculating **TOTAL** Parts per Million (PPM) is required to account for % of Urea in the fertilizer.
- •Conductivity meter only measures conductivity, Total Dissolved Solids or total PPM not the N:P:K ratio.
- •For best results there should be a Nitrate to Ammonium ratio in the fertilizer of 4 : 1 and NPK should be calculated.
- •Some fertilizer eg. Aquasol uses large amount of urea and potassium chloride as sources of nitrogen and potassium.
- •Potassium chloride contains chlorine ions. This causes salt build-up and root damage or loss if the mix dries too much. Particularly in combination with Aluminium Ions at low pH.
- •A fertilizer's concentration & N:P:K is doubled as the mix dries by 50% until further water is applied.
- •This makes use of high fertilizer concentrations?????
- •The same fertilizer as shown can be varied simply by changing it's dilution rate. So when someone says they use Campbell's Yellow
- •Increasing K levels results in lower concentrations of magnesium and calcium
- •Very high K concentrations results in shorter flower spikes.
- •100 ppm Nitrogen reduced growth in Cattleyas.
- •The use of Eco-Carb 33% K
- •Provides 330 ppm of potassium if used at 1 gram per litre. Normal use is 4 grams per litre = 1320 ppm if sprayed too heavily, adds to the K supplied to the potting mix.
- •Also used to increase pH of soil.
- •There is Calcium in Sydney's water supply. How much? Check with Sydney water and calculate total.

THE END

THANK YOU